3.14.18 \(\int \frac {x^8}{a+b x^6} \, dx\) [1318]

Optimal. Leaf size=40 \[ \frac {x^3}{3 b}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {b} x^3}{\sqrt {a}}\right )}{3 b^{3/2}} \]

[Out]

1/3*x^3/b-1/3*arctan(x^3*b^(1/2)/a^(1/2))*a^(1/2)/b^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 40, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {281, 327, 211} \begin {gather*} \frac {x^3}{3 b}-\frac {\sqrt {a} \text {ArcTan}\left (\frac {\sqrt {b} x^3}{\sqrt {a}}\right )}{3 b^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^8/(a + b*x^6),x]

[Out]

x^3/(3*b) - (Sqrt[a]*ArcTan[(Sqrt[b]*x^3)/Sqrt[a]])/(3*b^(3/2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {x^8}{a+b x^6} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {x^2}{a+b x^2} \, dx,x,x^3\right )\\ &=\frac {x^3}{3 b}-\frac {a \text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,x^3\right )}{3 b}\\ &=\frac {x^3}{3 b}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {b} x^3}{\sqrt {a}}\right )}{3 b^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 40, normalized size = 1.00 \begin {gather*} \frac {x^3}{3 b}-\frac {\sqrt {a} \tan ^{-1}\left (\frac {\sqrt {b} x^3}{\sqrt {a}}\right )}{3 b^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^8/(a + b*x^6),x]

[Out]

x^3/(3*b) - (Sqrt[a]*ArcTan[(Sqrt[b]*x^3)/Sqrt[a]])/(3*b^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.17, size = 32, normalized size = 0.80

method result size
default \(\frac {x^{3}}{3 b}-\frac {a \arctan \left (\frac {b \,x^{3}}{\sqrt {a b}}\right )}{3 b \sqrt {a b}}\) \(32\)
risch \(\frac {x^{3}}{3 b}+\frac {\sqrt {-a b}\, \ln \left (b \,x^{3}-\sqrt {-a b}\right )}{6 b^{2}}-\frac {\sqrt {-a b}\, \ln \left (b \,x^{3}+\sqrt {-a b}\right )}{6 b^{2}}\) \(60\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(b*x^6+a),x,method=_RETURNVERBOSE)

[Out]

1/3*x^3/b-1/3*a/b/(a*b)^(1/2)*arctan(b*x^3/(a*b)^(1/2))

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 31, normalized size = 0.78 \begin {gather*} \frac {x^{3}}{3 \, b} - \frac {a \arctan \left (\frac {b x^{3}}{\sqrt {a b}}\right )}{3 \, \sqrt {a b} b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^6+a),x, algorithm="maxima")

[Out]

1/3*x^3/b - 1/3*a*arctan(b*x^3/sqrt(a*b))/(sqrt(a*b)*b)

________________________________________________________________________________________

Fricas [A]
time = 0.38, size = 89, normalized size = 2.22 \begin {gather*} \left [\frac {2 \, x^{3} + \sqrt {-\frac {a}{b}} \log \left (\frac {b x^{6} - 2 \, b x^{3} \sqrt {-\frac {a}{b}} - a}{b x^{6} + a}\right )}{6 \, b}, \frac {x^{3} - \sqrt {\frac {a}{b}} \arctan \left (\frac {b x^{3} \sqrt {\frac {a}{b}}}{a}\right )}{3 \, b}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^6+a),x, algorithm="fricas")

[Out]

[1/6*(2*x^3 + sqrt(-a/b)*log((b*x^6 - 2*b*x^3*sqrt(-a/b) - a)/(b*x^6 + a)))/b, 1/3*(x^3 - sqrt(a/b)*arctan(b*x
^3*sqrt(a/b)/a))/b]

________________________________________________________________________________________

Sympy [A]
time = 0.11, size = 63, normalized size = 1.58 \begin {gather*} \frac {\sqrt {- \frac {a}{b^{3}}} \log {\left (- b \sqrt {- \frac {a}{b^{3}}} + x^{3} \right )}}{6} - \frac {\sqrt {- \frac {a}{b^{3}}} \log {\left (b \sqrt {- \frac {a}{b^{3}}} + x^{3} \right )}}{6} + \frac {x^{3}}{3 b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(b*x**6+a),x)

[Out]

sqrt(-a/b**3)*log(-b*sqrt(-a/b**3) + x**3)/6 - sqrt(-a/b**3)*log(b*sqrt(-a/b**3) + x**3)/6 + x**3/(3*b)

________________________________________________________________________________________

Giac [A]
time = 1.87, size = 31, normalized size = 0.78 \begin {gather*} \frac {x^{3}}{3 \, b} - \frac {a \arctan \left (\frac {b x^{3}}{\sqrt {a b}}\right )}{3 \, \sqrt {a b} b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^6+a),x, algorithm="giac")

[Out]

1/3*x^3/b - 1/3*a*arctan(b*x^3/sqrt(a*b))/(sqrt(a*b)*b)

________________________________________________________________________________________

Mupad [B]
time = 1.02, size = 28, normalized size = 0.70 \begin {gather*} \frac {x^3}{3\,b}-\frac {\sqrt {a}\,\mathrm {atan}\left (\frac {\sqrt {b}\,x^3}{\sqrt {a}}\right )}{3\,b^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(a + b*x^6),x)

[Out]

x^3/(3*b) - (a^(1/2)*atan((b^(1/2)*x^3)/a^(1/2)))/(3*b^(3/2))

________________________________________________________________________________________